• English
  • German
  • Spain
  • Chinese
  • Russian

Cyber Physical System, Internet of Things and Digital Twin: Central Concepts for Industry 4.0

Cyber Physical System, Internet of Things and Digital Twin

The Cyber Physical System (CPS), Internet of Things (IoT) and Digital Twin are all central concepts in Industry 4.0, often used interchangeably in discussions about Industry 4.0 and smart manufacturing. Each refers to a representation of a piece of equipment in cyber space. Such representations are of central importance in Industry 4.0 and for smart manufacturing, since they provide access to real-time operational data of the represented equipment. Use of this data ranges from machine operational status and compiling important KPIs, like OEE, MTBF, MTBA, etc., to big data analytics and machine learning applications, such as predictive maintenance. It is therefore worthwhile to examine what each means and how they relate to each other.

Read full post >

The CFX & FactoryLogix Advantage

The CFX & FactoryLogix IIoT Advantage

For anyone currently considering investment in a modern digital manufacturing solution, inclusive of any form of discrete assembly manufacturing, it is imperative that expectations and requirements are redefined in the light of this new IIoT platform based digital MES technology, that is set to genuinely drive the Industry 4.0 Smart factory revolution. 

Read full post >

What is MES System? Part #3

What is MES? Part 3

In the first part of this three-part series, we learned how the top level of Manufacturing Execution Systems (MES) work in the factory to provide results against business goals and requirements, managing the flow of production for final products and sub-assemblies. In the second part, we took take a more detailed look into the deeper levels of MES, discussing other areas within the factory that MES manages, that enable the final production flow to work smoothly and effectively. In this last segment of the series, we finish by looking further into the levels of MES functionality that enables final production to work effectively. We then explore different types of MES and review the important aspects of MES to keep in mind when first implementing or when upgrading a basic MES that is already in place to a system with the latest IIoT digitalized technology. 

Read full post >

What is MES System? Part #2

What is MES? Part 2

In the first part of this three-part series, we learned how the top level of Manufacturing Execution Systems (MES) work in the factory to provide results against business goals and requirements, managing the flow of production for final products and sub-assemblies. We will now take a more detailed look into the deeper levels of MES, discussing other areas within the factory that MES manages, that enable the final production flow to work smoothly and effectively. 

Read full post >

What is MES System? Part #1

What is MES? Part 1

Manufacturing Execution Systems (MES) have been available on the market for quite some time now and for buyers at any stage of research, there are literally hundreds of MES options to consider.  As the term “MES” tends to cover a very broad range of   capabilities, it’s unlikely to find any two solutions that will offer the exact scope of functionality. This is especially true within just the last few years, given the rapid progress of digital technologies related to “Smart Factory” or “Industrial Internet of Things” (IIOT) initiatives. It’s therefore crucial for you to understand the basic principles behind MES so that it can be put to work for your organization’s requirements, instead of the other way around.

In this three-part blog series, we’ll break down the fundamentals concepts of MES so that regardless of where you’re at with your research, you’ll be equipped with some new tips and principles to incorporate into your knowledge base. 

Read full post >

Putting Artificial Intelligence to Work for Industrial Operations

Putting Artificial Intelligence to Work for Industrial Operations

By now, we are all familiar with the concept of Industry 4.0, a popular business model that enables manufacturers to become faster, more efficient, and more flexible to respond to inevitable market changes. While traditional approaches to factory automation continue to be successful, they are often focused on specific production operations, leaving the critical operational level decision unaddressed or at best, open to interpretation. If we don’t get to it soon, someone else (or something else) will do it for us, and it may not be a human.

Read full post >

When Does Software Become “Ransomware"?

When Does Software Become “Ransomware”?

Many software systems in use in manufacturing today are holding the business to ransom. Well-meaning, mainly internally developed software utilities, have established a critical dependency on themselves. It appears that manufacturing could not work without these systems, yet on the flip-side, the operation also cannot easily progress to the next level of digital manufacturing. What does it take to acknowledge the past value and contribution of these systems, but now be able to break free and move on to the next generation of digital manufacturing tools?

Read full post >

Shaping Your Industry 4.0 IIoT Pathway

Shaping Your Industry 4.0 Pathway

Even for industry-leading manufacturers, making the move from manual processes towards a “digital transformation” is not without its challenges. One of the biggest hurdles is deciphering what YOUR organization’s Industry 4.0 journey looks like, unique to your own industry, customers, and manufacturing blueprint. Ultimately, there isn’t a one-size-fits-all method for embarking on the Industry 4.0 journey, but there ARE a few common in-roads to achieve sustained success. 

In this blog post we’ll cover four potential starting points to jump start your efforts. Keep in mind that each of these key elements of digital innovation—IIoT connectivity, smart applications, and advanced analytics—will eventually play a critical role in your factory. Regardless of where you choose to begin, this framework is meant to create an architecture into which you can implement small projects.

Read full post >

MES and ERP Together – Top Integration Benefits for Today’s Leading Manufacturers

MES and ERP Together – Top Integration Benefits for Today’s Leading Manufacturers

Today’s shop floor is a highly-complex, continually-shifting environment. A recent study by Aberdeen Group polled today’s best-in-class manufacturers and found that the top reported pressures of modern manufacturing include:

• Differentiation while still improving quality (39%)
• The flexibly to respond to business demands (36%)
• Compliance with current and future industry regulations (27%)

While an Enterprise Resource Planning (ERP) system can solve challenges in areas such as capacity planning, inventory management, and business financials, today’s manufacturing environment requires much more than an ERP system alone — more flexibility, more data, and more connectivity.

Read full post >

APEX 2018 – The Industrial IoT Event Of The Decade

APEX 2018 – The IoT Event Of The Decade-EN

If you are one of the few remaining people who has not heard about the event of the decade coming up at the APEX tradeshow at the end of this month, you really need to read on. APEX is set to rock the manufacturing world in a way that has not been seen for many years.

Read full post >

Subscribe to our blog

Cookie Settings
Automat:ee